If it's not what You are looking for type in the equation solver your own equation and let us solve it.
a^2+3a+9=
We move all terms to the left:
a^2+3a+9-()=0
We add all the numbers together, and all the variables
a^2+3a=0
a = 1; b = 3; c = 0;
Δ = b2-4ac
Δ = 32-4·1·0
Δ = 9
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{9}=3$$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(3)-3}{2*1}=\frac{-6}{2} =-3 $$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(3)+3}{2*1}=\frac{0}{2} =0 $
| 3x+52=5x+18 | | 9x-10=6x+1 | | H(x)=4(3×)+3 | | 5x+70=15x | | (3x-70)=40 | | (3x-70)=45 | | f(7)-f(6)=-3.2 | | (3x-70)=35 | | 11x+61=9x+39 | | 9x+39=11x+61 | | 160-y=102 | | 2x+65xx=2 | | 10x-26=7x+7 | | 21=5-4b | | 21=|5-4b| | | -40=7u+9 | | 0=-3g+9 | | f+-84=-72 | | 3((3v-4)=51 | | 3x+4×=105 | | -18=5z=37 | | 55x-220=440 | | -4x-9=55 | | 6/11y+18=48 | | 6/11y18=48 | | q^2−9q+1=2 | | 10x+18=128 | | −2(3x+3)=-6x-7 | | g(8)=5(8)-3 | | -5/a+14=49 | | 4x2.54=10.16 | | 8(2x=3) |